Big data : A major problem in today’s era.
✦ Let’s understand where this Big data actually arises from…
Big data is simply the large sets of data that businesses and other parties put together to serve specific goals and operations. Big data can include many different kinds of data in many different kinds of formats.
For example, businesses might put a lot of work into collecting thousands of pieces of data on purchases in currency formats, on customer identifiers like name or Social Security number, or on product information in the form of model numbers, sales numbers or inventory numbers.
All of this, or any other large mass of information, can be called big data.
Big Data Case Study — Walmart

Walmart is the largest retailer in the world and the world’s largest company by revenue, with more than 2 million employees and 20000 stores in 28 countries. It started making use of big data analytics much before the word Big Data came into the picture.
Walmart uses Data Mining to discover patterns that can be used to provide product recommendations to the user, based on which products were brought together.
WalMart by applying effective Data Mining has increased its conversion rate of customers. The main objective of holding big data at Walmart is to optimize the shopping experience of customers when they are in a Walmart store. Big data solutions at Walmart are developed with the intent of redesigning global websites and building innovative applications to customize the shopping experience for customers .Hadoop and NoSQL technologies are used to provide internal customers with access to real-time data collected from different sources and centralized for effective use.
Issues related to Big data
» Volume
Big data implies enormous volumes of data. It used to be employees created data. Now that data is generated by machines, networks and human interaction on systems like social media the volume of data to be analyzed is massive. Yet, Inderpal states that the volume of data is not as much the problem as other V’s like veracity.
» Velocity
Big Data Velocity deals with the pace at which data flows in from sources like business processes, machines, networks and human interaction with things like social media sites, mobile devices, etc. The flow of data is massive and continuous. This real-time data can help researchers and businesses make valuable decisions that provide strategic competitive advantages and ROI if you are able to handle the velocity. Inderpal suggest that sampling data can help deal with issues like volume and velocity.
✦ Distributed Storage:
As we have seen that Big data has two major problems that is Velocity and Volume , so to solve these problems we have a solution called as Distributed Storage.
For implementing this concept of distribution we require one product known to Hadoop.
Hadoop
Hadoop is one of the tools designed to handle big data. Hadoop and other software products work to interpret or parse the results of big data searches through specific proprietary algorithms and methods. Hadoop is an open-source program under the Apache license that is maintained by a global community of users. It includes various main components, including a MapReduce set of functions and a Hadoop distributed file system (HDFS).
Why is Hadoop important?
- Ability to store and process huge amounts of any kind of data, quickly. With data volumes and varieties constantly increasing, especially from social media and the Internet of Things (IoT), that’s a key consideration.
- Computing power. Hadoop’s distributed computing model processes big data fast. The more computing nodes you use, the more processing power you have.
- Fault tolerance. Data and application processing are protected against hardware failure. If a node goes down, jobs are automatically redirected to other nodes to make sure the distributed computing does not fail. Multiple copies of all data are stored automatically.
- Flexibility. Unlike traditional relational databases, you don’t have to preprocess data before storing it. You can store as much data as you want and decide how to use it later. That includes unstructured data like text, images and videos.
- Low cost. The open-source framework is free and uses commodity hardware to store large quantities of data.
- Scalability. You can easily grow your system to handle more data simply by adding nodes. Little administration is required.

For further queries ,connect with me on linkedin :